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In the paper by Giese and Cohn [ 1 I the hodograph equations of irrota- 
tional steady conical flow of a gas are reduced to a canonical system of 
three equations for the velocity components u. v, v, the highest deriva- 
tives of which are in Laplacian form. The position of the ray, c = x/z. 

q = Y/Z. corresponding to the velocity u. v, I, is determined by deriva- 
tives of u. v. W, with respect to independent variables introduced by the 
authors. In using their equations to find approximate solutions, a number 
of difficulties appear. In the first place, it is not clear how the 
linearized theory will appear in their variables; secondly, 5‘ must be de- 
termined by derivatives of the approximate solution; thirdly, it is not 
clear whether every conical flow will be single-sheeted in the II. v plane. 
For these reasons, another method is proposed here. The quasi-linear 
differential equation of second order, AFg + 2BFh + CFv,, = D, wher; A, 

B, C, D are arbitrary functions depending on g, q, F, Ft, F,,, AC - B > 0, 
is reduced to the canonical system of equations 

AS = %, A? = @2, Au = @, Au = @,, Am = (D5 

*z$+$, u = FE, r=Fg, w = F - (u - qz* 

Here the functions 4 depend on e. Y. u. V. v and their first deriva- 
tives with respect to p. n. 

A method is given for obtaining the second approximation in the non- 
linear theory of irrotational steady conical flow of a gas. A check on 
the accuracy of the method is given for the example of axisymmetric flow 
over a circular cone. 

1. ‘l’he differential equation for the irrotational nonlinear flow of a 
gas has the fon 

AFcS f 2BF,, + CF,,, = 0 U-1) 

where 
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A = a2 (1 + E2) - (u - Ew)? 

as= a02 _ _L 
2 CK 

-1) (u” + 79 + w’? - W,2) (u = FE) 

B = (a2 - w”) Eq + (uq + GE) w - uu (w= F-QJ-~u) 

C=a2(1 +v/2)-(U--TpI)2 (v = F,,) 

a is the velocity of sound, K is the ratio of specific heats, aq, WO are 
respectively the velocity of sound and velocity at a certain point of the 
flow, u, u, UI are the velocity components, the quantities 6, 7 correspond 

to the coordinates x and y of points in the plane z = 1 of the ryz field. 

If the projection of the velocity on the plane perpendicular to the 

radius-vector of the point in the ryz field is less than the velocity of 

sound, then equations (1.1) are of elliptic type. The coefficients A, B, 

C in (1.1) depend on the unknown function F, which makes it impossible 

to reduce equations (1.1) to a system of two first-order equations, and 

subsequently to canonical form according to Khristianovich’s method 12 I. 

In the following, a method is developed for reducing equations of type 

(1.1) to a canonical system. It appears that this had not been done for 
the general case (cf. for instance [ 3 1 ). These results supplement 

Khristianovich’s results. 

let us examine the equation 

_1Pcs + M/J<, + CP,,, = I) (I.?) 

where A, B, C, D are arbitrary functions of t, 7, F, Ft, F?. Equation 

(1.2) is equivalent to the system 

Arrg + H (U, + YE) + (‘I’, = 1) tiP = udk + rdr, (1.3) 

. J&-e we make the substitution w = F - [U - T]U (all that follows below 

can also be carried through without this substitution, with no essential 

changes). We obtain 

dw + r,dv + Ed/r = 0 (1 ./t) 

We introduce new independent variables p, o defined by the relations 

(1 .:)) 

‘1’ ~. /IQ REP + Jf.W - H2 :-,= 0. R = h/, - /IEn - 1/x -- 112 ;, =I) 

‘Ihe quantities u, u, w, c, ? are now considered to be functions of p, 

o. ‘lhe variables p, o are the same as occur in Courant and llilbert [ 3 I , 
but in the relations for 5, q there given, the present author has 

succeeded in separating the factors N and R, which are linear in the de- 

rivatives. We note that p, o have the meaning of Wcomplex characteristicsn 

[21. That is, if we formally write the equation of the characteristics 
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of (1.2) in the form 

_4 g - (B*+ i V/AC-- Ba) $- = 0 

and go over from r = p + W, r = p - W to p, (I, then, after separating 

real and imaginary parts, we will obtain (1.5). It is easy to prove that 

equations (1.5) are invariant with respect to conformal transformation 

of the plane of the independent variables, p + W = f b* + iu’), where f 
is an analytic function, p* and CT* are new variables. Fran (1.5) it 

follows that the Jacobian is 

Epql - Lq, = 
v/AC - Ba 

A (&” + ;,*) (1.6) 

and can become zero only at isolated points. Going over to the variables 

p, 0 in equation (1.4) and using (1.5) as well as the relations 

X =-- ;N- I’- ““,, Ba R = CEP - BQ - vm*q. = 0 

y_ I/AC--B’ ijl - ~;“. H = CEO - 
-- 

- 
A 

BYJ,+ I/AC-B* yp=O (1.7) 

we obtain a system equivalent to (1.2): 

h- = EpuC + Ma +- W, + rjar. - 

L=w,+Yp,fju,=O, iY = AQ - Bi,+I/AC-B2&,= 0 (l .X) 

.~I=W0+7p,+~U~=0, II = Aq,, - B:-, -.- I/AC - B* ep, = 0 

We form the relations 

s = L, + _+I, = AIU + r,Az. + :Au + FPup + F,u, + q,rP + q,z’. = 0 

(1 .!)) 

lhe relations S = T = 0 will be equivalent to L = M = 0, if it is required 

that the condition L+ + Udo = dtp + qdv + (du = 0 be fulfilled on the 

boundary of the region in which the solution is required. 

In (1.8) we replace L = M = 0 by S = T = 0, and in S = 0 we replace 

the terms with first derivatives by the term which contains D in K = o. 
‘ken we obtain the system 

(1.10) 

S=Aw+qAv+tAu-j- &___(:PY,~ -:oY~p) 0, K = 9' = N = N = 0 

Using (1.6) we form the combinations 
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(1.11) 

A-i-iT = (tP + &)(q - iu,) + (qP + iq,)(~~---i~~) - -$(i,+ i;,) (Ed -ii,) = o 

~ 
!V + iz? = A(7jo + iqO)-(B + i I/AC-HZ)& $- &) = 0 (1.12) 

If in relation (1.11) we replace the quantity (qP + i?,)/($ + i&J 
by (B + i\IAB -B*)/A f rom (1.12) and separate real and imaginary parts 

in the resulting relation, we obtain two equations: P = 0, Q= 0, 

equivalent to K = 0, T- 0. With the remaining equations of (1.10) we 

have 

P=Au,+Bu,+JfAC-B2z+D+0 

Q=Au,+Bz’,--AC--B+--D&=0 (1.13) 

iv = Aqp - B$, + j/k -IF;,, = 0, R = /lrja - BE,, - I/AC - B2&, = 0 

S = Aw + rlAv + ;Au + -&z& (ipq, - ioqo) = 0 

plus the boundary condition dw + qdv + [du = 0. 

From the system (1.13) it is easy to go over to a system with second 

derivatives in Laplacian form. We foxm the relations 

(1.14) 

P,+ Qo= BAv+AAu-DA;+...=O, I\* + R, = AAq-BAE+...= 0 

P,-QQ,=~/AC-B2Av+...=0, N,-RR,=~AC-R2A.i+...=0 

'lhe dots denote terms which contain no second derivatives. Fran (1.14) 

andS=0, noting that AC - 8’ f 0, A f 0, we find 

Au=@~, Av --: 02, Aw=@, A:=@,, Aq = Ob (1.15) 

where the cb depend on 5, 9, u, II, w and their first derivatives with 

respect to p, u. lhe system (1.15) is equivalent to (1.13), if it is re- 

quired that on the boundary the conditions 

Pdp + Qda = Adu t Bdu + J/AC - B2 (vodp - u,da) - Ddi = 0 

Ndp + Rda = Adr) - Bd; + I/AC-H2 (i,dp - E,do) = 0 (1.16) 

dw + qdv + Edu = 0 

be satisfied, since equations (1.14) for the functiolls P + iQ, N+ i R 
represent Cauchy-Riemann conditions. 

For the case D 3 0, the system (1.14) may be obtained in a more sym- 
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metric folm. We will show how this can be done for the case of t, 7. let 
N', R', X', Y' represent the quantities IV, R, X, Y[cf. (1.5), (1.7) 1 
divided by 4 AC- B *. Farm the relations 

N,' - R,‘= 0, Y,’ -XX,‘=N,‘+R,‘+EN’+FR’=O (1.17) 

where B, F are functions which are bounded inside any closed sub-region 
of the region where the solution is required. If it is required for the 
condition N'+ + R'cb = 0 to be satisfied on the boundary, then equations 
(1.17) areequivalenttoN"=R'= 0. &No'-R'=A[+.,.= 0, Y'- 
Xo' = At+ . . . = 0. P P 

'lhe system (1.15) for D I 0 has the form: 
(1.18) 

At, = -B > ( vAC-Hd P “- _B~v +( 
VAC-&,a ’ 

AWL’ = --A"-[Au 

plus the boundary condition (1.16). Ihis system is invariant with respect 
to conformal transformation of the plane of the independent variables. 

We will note, for later reference, that the system (1.8) is equivalent 
to the system 

s=o, L=M=N=R=O (1.19) 

where S = 0 is taken in its form in system (1.10). 

2. We shall apply the method of successive approximations to the equa- 
tion of conical flow of a gas (l.l), transformed to the system (1.8). In 
the right-hand sides of.(1.18), and in the coefficients of the derivatives 
in the boundary conditions (1.16), we put the values corresponding to the 
first approximation, for which we use the ordinary linearized theory of 
flow around conical bodies. This gives a system of Poisson equations for 

let us find the solution of (1.18), or the equivalent system (1.13), 
which corresponds to a uniform flow u = v= 0, w= w. (axis Oz is in the 
flow direction). Putting u = u = 0, 
S = 0 are satisfied, while the 

w = w0 in (1.13) we find that P= Q- 
equations N= R = 0 have the solutions 

the second approximation, etc. 
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which are obtained by first transforming to polar coordinates in the 

planes 5, T, and P, 0, according to the equations 

I/nr,zr -lt= rcosrJ, 1/1V,“--lq=rsinFJ, p=acosp, o=asinp (2.11 

where M,, is the free stream Mach number 

?a j-Z------- 
l+az ’ 

f3=p 

IIhe linearized thenry is obtained if, in the right-hand sides of the 

systeln (1.181, in A, B, C, 5, 7 and their derivatives, we put the values 

2a 
T(O) = 1+ 5 40! = 91 u=v=o, w = w. (2.2) 

‘Ihe first derivatives of u, u are left in the exact form, since they be- 

long to the functions which are to be found; that is, the equations for 

a, v, corresponding to the linearized theory, contain not only Laplaciaus 

but also first derivatives of the unknown functions. 

Actually, we shall put the values (2.2) only in A, B, C, in (1.18) as 

well as (1.16). ‘Ihen, proceeding in a direction opposite to that which 

led to (1.181, that is going from (1.181 to (1.131 . . . (1.81, and, 

finally, to (1.191, we can establish that u 

satisfy (1.19), when A, B, C correspond to \b 

), ~(~1, TD(~),~(~), ~(~1 

.2). 

Since in the linearized theory the outer boundary of the conical flow 

is the Mach cone, we can again take the solutions of the equations N = 0, 

R = 0 to be r(1) = 2a/(l i a*), O(1) = /J, which 

21” 

satisfy those equations. 

Fig. 1. 
In (1.19) we are left with the equations 

8 = Aw) + m%,) + &&CC = I’ 

L = U’(l), + -fdlP’(l)P + &lP(l)P = 0 

111 = u’(l)o + r,(l)~(l)O + S(lP(,)a = 0 

It is easy to prove that the solution of this system is given by three 

hamonic functions, which are related by the equation 
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(2.3) 

c-iS. . 
appears as the rea 1 

1) + qlp(l) = ' 
part of equation (2.31, nmltiplied by 

index (yb; I-~?,=, ;-: 
A 6 
I Q I) , 
in ex 

= Q( o 
(0) vL 

then if y reptace dyes with 
erever possible in equations (1.161 

and (1.181, we find that the linearized theory appears as the solution of 

(1.18) with the specified right-hand side, and the r-plane is the plane 

introduced by ELsemann [ 4 I . 

The invariance of (1.18) with respect to conformal transformation (of 

the plane of the independent variables) makes it possible to look for 

solutions in any convenient region of the pu -plane. We shall exmnine 

separately the cases in which the region occupied by the conical flow in 

the e, n plane is singly connected and doubly connected. For the case of 

the singly connected region we shall take the example of flow over the 

upper portion of a plane delta wing with supersonic edges, at angle of 

attack 6 [ 5 1. 

‘Ihe envelope of the Mach cones with vertices along the leading edge is 

defined by the planes 8-3, 8’-3’, and the arc of the Mach cone 3-1-3’ 
(Fig. 1). After the straight lines 3-8, 3’-8’, come Prandtl-Meyer fans, 

followed by regions of uniform flow. ‘lhe region of conical flow is bounded 

by a weak, unbroken shock wave, 7-3-2-3’-7’, and the plane of the wing, 

8-7-7’-8’. Ihis shock lies near the Mach cone 3-i-3’, the arc of the 
curvilinear characteristics 3-4 and 3’-4’ of the Prandtl-Meyer flow, the 

straight characteristics 4-5, 4’-5’, and the arcs of the Mach cones 5-6 

and 5’-6’ of the expanded flow. ‘lhe author assumes that AC- B2 > 0 in 

this region (in those cases for which the angle at the vertex of the wing 

is substantially different from n). In the linearized formulation, the 

region of conical flow for c > 0 has the foxm shown in Fig. 2. 

For the region of the variables p u in the exact solution we take the 

plane which is obtained by mapping the 5, 7 plane of the linearized 

problem on to the p, u plane according to the equations r = 2a/( 1 + a2 1, 

6 = p. lhe second approximation is also sought in that plane. (For the 

actual determination of the second approximation, this region may be 

mapped on to a circle or on to some other region for which Green’s function 

is known). In our example, the region in the p, u plane is a quadrant of 

the unit circle. 

For finding the second approximation in the case of a doubly connected 

region (a body entirely enclosed by the shock wave) the region of the 



1116 B.M. Bulokh 

linearized problem (Fig. 3) in the 51 plane is also transformed into the 

p u plane according to the equation r = 2a/(l + CZ* 1, 8 = p, and this 

region is transformed into a ring, whose internal radius we will fix. 

Correspondingly the linearized solution is transformed to new variables. 

We will seek the second approximation in a ring whose inner radius co- 

incides with that of the first approximation, while the outer radius, 

which is not at first known, will be found as part of the solution 

of the second approximation. lhe difference in these radii for a circular 

cone is O( c ), where f is the half-angle of the cone, and is illustrated 

in Fig. 4, wh ere R, is the fixed radius, R, is the radius in the first 

approximation, and R, is the radius in the second approximation. 

Fig. 2. Fig. 3. Fig. 4. 

‘Ihe boundary conditions at the shock wave, which express the continuity 

of the velocity component tangent to the shock surface, and the condition 

for the normal component for an oblique shock, have the form 

w - w. f r&l + Eu = 0 

1 j_ ‘(‘II - U’ x+1 
a0 

Iv, 2 = 1’2 
1 c 7--l- l+---& ( r2 ‘1, lr, ; w nso +-$ I (2.4) 

I 

where (0, 0, 1~) and (u, u, IU) are the velocity components before and 

after the shock, [, 7 are coordinates of the shock surface, r = s \r5’T 

7$, tan e = 7 /c!J, K is the adiabatic exponent, m = tix2-- 1, M, and a, 

are the Mach number and velocity 

For bodies which are entirely 

(dr/dt)’ and putting r = 1 (Mach 

obtain 

of sound ahead of the”shock. ” - 

enclosed by the shock wave, neglecting 

cone), for the second approximation we 

For bodies which extend through the Mach cone it is also possible to 

make a linearization (2.4) appropriate to the specific problem. lhe con- 
dition which states that the velocity component normal to the body is 

zero has the form 
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25 (u - &I) + z, (v - r,w) = 0 (2.6) 

where Z(tJ, 7j) = 0 is the equation of the 

linearized if all the terms are taken to 

correction, and terms containing squares 

ions are neglected. 

body contour. 'lhis may be 

be a first approximation plus a 

or higher powers of the correct- 

On the Mach cone, (AC-B* 1 

singular in the determination I 

1~ becomes zero and its surface becomes 

0 the second approximation, though this 

circumstance does not require the introduction of special methods, since 

the author finds that already (AC - B2 )(,) f 0. 'lhe author will not 

Fig. 5. 

dwell on the series of technical difficulties that may appear in the work- 

ing out of the second approximation. For exaqle, (AC - B2)ti) < 0 on 

3-6 (Fig. 2); this results from the circumstance that the boundary condi- 

tions are taken on the Mach cone of the undisturbed flow. 'lhis difficulty 

can be avoided if the boundary conditions are taken on the Mach cone of 

the expanded flow, which may be done without going beyond the limits of 

accuracy of the linearized theory. 

3. To evaluate the accuracy of the second approximation, it was worked 

out for axisynznetric flow over a circular cone. It may be shown that the 

solution for a cone depends only on a [cf. (2.1) I. 

c, 
a2 

E=fff 

ar 2 

k 

0 
I 

0 J1 
3 

lv12 LO M 

Fig. 6. 

If the radial velocity component is denoted by h, the system (1.19) 

becomes 
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Putting w’ from the second equation of (3.1) into the first, and using 

the third equation, we find 

rw’ = f 
[ 

1 + rzZ (A - ~;/m)2j-1/xh 

ai.’ = - 
I 
1 + ,zy (A - “,‘a’ lI W]-‘12 )i 

ar’=r l+ 3- 
[ 

(A- ZL’~ I rnj2 
1 
'/s 

a2 

(3.2) 

‘Ihe system (3.2) is essentially equivalent to (1.181, since the linear- 

ized solution is obtained if the squared bracket and r in the right-hand 

sides of (3.2) are replaced by their values corresponding to the uniform 

flow, cl = tr = 0, w = WO’ r = 2a/(l + a*). 

If in the right-hand side of (3.2) we put values corresponding to 

Fig. 7. 

slender body theory rather than the linearized theory, which we do to 

simplify the calculations, 

2a -- r(l) - 1 + a” 3 
no?/ 1 

i.(,) = w. _>_~ \y - a 
> 

, zq,) = w. (G In a + 1) (3.3) 

then we obtain the system of the second approximation, which can be 

solved by integration. Satisfying the flow condition on the body for 

a = 1/2mr, x t2) = ~(~1 tan 6, the condition (2.5) at the shock gives for 

aI, determining for the outer radius of the ring, the value 
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where 

1 = __x+l Jfn4. 1 - --- 
4 11~3 k 

The term containin 2 takes into account the shock position. &I the 

shock, 

of the 

r 2J = 

/l 

B 1 + O(c In 1/2mc 1, which is not correct; but the influence 

s ock on the velocity components at the body within the-present 

theory is Ott6 lnr 1, and it is not necessary to take it into account in 

the solution of other problems. 

The pressure coefficient on the cone surface is given by the expression 

+ 1112~~ ln2 y + 2 ( MO2 - -!- - 1)s' 111 -y + 
l/11 

+{L?y_L-+ 
31/t’ 

-+s +;1~o'[2~(2+(x-l)~~lo*)+ 

+ 
y-yE4 +qE5111?y) (3.6) 

This expression does not agree with that given by Broderick, [7 I, 

which is easily explained, since the two solutions have been obtained 

along different lines. Calculations using equation (3.6) show that it 

gives somewhat more accurate results than Broderick's formula for the 

second approximation. 

Figures 5, 6, 7 for cone angles f = 5, 10, 15' are taken from Broderick 

17 I; the curves marked 1 correspond to the numerical solution, curves 2 

are Broderick's second approximation, curves 3 are the slender body theory; 

the points are the values of CP computed from equation (3.6). 

The author thanks V. Falkovich for his valuable suggestions. 
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